Proximity-dependent inhibition in Escherichia coli isolates from cattle.

نویسندگان

  • Ashish A Sawant
  • N Carol Casavant
  • Douglas R Call
  • Thomas E Besser
چکیده

We describe a novel proximity-dependent inhibition phenotype of Escherichia coli that is expressed when strains are cocultured in defined minimal media. When cocultures of "inhibitor" and "target" strains approached a transition between logarithmic and stationary growth, target strain populations rapidly declined >4 log CFU per ml over a 2-h period. Inhibited strains were not affected by exposure to conditioned media from inhibitor and target strain cocultures or when the inhibitor and target strains were incubated in shared media but physically separated by a 0.4-μm-pore-size membrane. There was no evidence of lytic phage or extracellular bacteriocin involvement, unless the latter was only present at effective concentrations within immediate proximity of the inhibited cells. The inhibitory activity observed in this study was effective against a diversity of E. coli strains, including enterohemorrhagic E. coli serotype O157:H7, enterotoxigenic E. coli expressing F5 (K99) and F4 (K88) fimbriae, multidrug-resistant E. coli, and commensal E. coli. The decline in counts of target strains in coculture averaged 4.8 log CFU/ml (95% confidence interval, 4.0 to 5.5) compared to their monoculture counts. Coculture of two inhibitor strains showed mutual immunity to inhibition. These results suggest that proximity-dependent inhibition can be used by bacteria to gain a numerical advantage when populations are entering stationary phase, thus setting the stage for a competitive advantage when growth conditions improve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of ehxA, stx1, and stx2 Virulence Gene Prevalence in Cattle Escherichia coli Isolates by Multiplex PCR

  Today, it is nearly 25 years past from investigation of Shiga toxigenic Escherichia coli (STEC) which is able to produce Shiga toxins and cause different gastroenteritis. Since incidence of gastroenteritis due to STEC is increasing, it's necessary to develop rapid, specific and accurate procedures like PCR. In this study, we used PCR method to detect and identify STEC in cultures of 55 Escher...

متن کامل

Detection of Colicin genes by PCR in Escherichia coli isolated from cattle in Shiraz-Iran

A variety of probiotic bacteria have been tested to control animal and foodborne pathogenic bacteria in livestock. The mechanism of inhibition of pathogenic bacteria for several of those probiotic microorganisms is mediated by the production of bacteriocins. Colicins are probably the group of bacteriocins that have been most thoroughly characterized. Colicins are antimicrobial proteins produced...

متن کامل

Prevalence and molecular characterization of verotoxin-producing Escherichia coli O157:H7 in cattle and sheep in Shiraz-Iran

Shiga toxin producing Escherichia coli have been associated with HUS, HC and TTP in human. We found recto-anal mucosal sample in sheep as well in cattle is the main site for E. coli O157 localization. 1246 E. coli isolates from 872 both healthy and diarrheic animals were analyzed, by screening for the presence of Shiga toxin-producing (VT 1 and VT 2) and intimin (eae) genes used Multiplex PCR. ...

متن کامل

Hyperimmune lipopolysaccharide antiserum mediated inhibition of the adherence of E. coli O157:H7 to HEP-2 cells and large intestine of mice

Escherichia coli O157:H7 is found in cattle farms and can live in the intestine of healthy cattle. Mostcases of human illnesses including nonbloody diarrhea, hemorrhagic colitis and hemolytic uremic syndromecan be traced, either directly or indirectly, to cattle. One strategy for reducing the risk of EnterohemorrhagicEscherichia coli (EHEC) infections in human is to reduce the prevalence of inf...

متن کامل

Phylogenetic group determination of faecal Escherichia coli and comparative analysis among different hosts

Phylogenetic analysis has shown that Escherichia coli is composed of four main phylogenetic groups (A, B1, B2 and D). Characterization of phylogenetic groups is of clinical interest, as group A and B1 generally associated with commensals, whereas most enteropathogenic isolates are assigned to group D, and group B2 is associated with extra-intestinal pathotype. One hundred E. coli strains recove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 7  شماره 

صفحات  -

تاریخ انتشار 2011